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Abstract— The programming of a swarm of autonomous 
agents to perform a given task is a time-consuming process.  
This work proposes the development of a genetic 
programming system to self-evolve rule-bases for swarms of 
autonomous agents.  The genetic programming system utilizes 
finite state machines to represent candidate algorithms.  The 
currently implemented system has been used to evolve rule-
bases for the problem of object collection, a standard problem 
in the area group coordination. 

Index Terms—genetic programming, swarm 

I. INTRODUCTION 
EVELOPING a high-level rule-base for the completion of 

a task by a single autonomous agent can be daunting.  
Trying to program a large group, or swarm, of less capable 
agents to perform the same task can be even harder.  The 
programming of a swarm of autonomous agents to perform a 
given task is a time-consuming process that poses many 
hidden (or emergent) properties that must either be exploited 
or repressed.  This work explores the use of genetic 
programming to evolve rule-bases for swarms of autonomous 
agents.  

II. GENETIC PROGRAMMING IMPLEMENTATION 
Genetic programming [1] is an extension of traditional 

genetic algorithms.  Typically, a population in a genetic 
algorithm consists of encoded solution strings.  Genetic 
programming populations, however, consist of encoded 
programs, which when executed provide solutions to the 
problem being attacked.  Fundamentally, the principal 
difference between the two is that genetic algorithms tend to 
provide one specific solution, whereas genetic programming 
provides an algorithm to find a solution. 

Traditionally, genetic programming methods can be broken 
down into four major components: solution encoding, 
evolutionary operators, fitness evaluation, and selection 
mechanisms.  This next section will discuss each of these 
components and how they have been implemented for use in 
evolving rule-sets for swarms of agents. 

A. Solution Encoding 
The encoding of candidate solutions is perhaps the most 
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important parameter to be determined when implementing an 
evolutionary system.  In the case of swarm encoding, 
however, a definition for an agent must be established prior to 
the characterization of any scheme.  For the purpose of this 
work, an agent is defined as an entity that perceives its 
environment through sensors and affects its environment 
through actions.  All the sensors used are binary sensors, and 
all of the actions implemented are assumed to be atomic.  The 
agents also have a small amount of memory to act as 
persistent storage for certain actions, but this memory is not 
currently used to influence state changes.  This definition of 
an agent is very abstract on purpose since the focus of this 
work is to evolve rule-sets for higher-level behaviors.  
Consequently it is critical to abstract away the lower-level 
details. 

A finite state machine representation was chosen for the 
solution-encoding scheme.  A finite state machine consists of 
a collection of states, with a set of transition rules associated 
with each state.  Each of these transition rules is then 
associated with a particular action and the name of the next 
state in which the machine should reside.  Thus, a finite state 
machine can be seen as a collection of subroutines that call 
other subroutines based on given inputs.  The finite state 
machine representation was chosen for its simplicity and clear 
representation of agent states.  The internal representation of a 
finite state machine can be seen as a 4-tuple consisting of the 
set: {current_state, sensor_states, action, next_state}.  The 
variables current_state and next_state are simply names of 
states within the finite state machine, and signify the current 
agent state and the state that it should transition to if the rule 
fires.  The action is the name of the action that will be 
executed if the transition rule is fired.  The sensor_states 
variable is represented as a binary string, with a ‘1’ signifying 
that a sensor response is true and a ‘0’ signifying that a sensor 
response is false. 

Fig. 1 depicts an example finite state machine that will 
direct an agent to pick-up an object and bring it to a light 
source.  The finite state machine has two states, S1 and S2.  
The agent is endowed with two sensors, one for detecting 
nearby light sources and another for detecting objects within 
picking up range. There are three actions that may be 
performed by the agent: move randomly, pick up and object, 
and put down an object. The transitions between states (shown 
by arrows), define the conditions on which an agent changes 
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state.  A condition is denoted though a binary representation 
which translates into the desired sensor conditions [2].  For 
example, the condition denoted by the rule “FF v TF”, says in 
words, “IF (not near a light source and not near an object) OR 
(near a light source and not near an object) THEN (move 
randomly).” 

With this finite state machine, an agent will begin execution 
in state S1.  While an agent does not see an object, the agent 
will randomly walk and stay in state S1.  When an object 
comes within reach, the agent will pick up the object (action 
A2), and transition into state S2.  Once in state S2, the agent 
will walk randomly as long as there is not any nearby light 
sources.  Once a light source is found, the agent will put down 
the object and return to state S1, beginning the process over 
again. 

B. Evolutionary Operators 

1) Mutation 
In this work, the designed mutations affect small changes 

upon single solutions within a given population, thus “fine-
tuning” a solution.  The creation and implementation of a 
mutation is tightly coupled with the solution encoding.  Since 
the solutions will be encoded as finite state machines, the 
mutations will effect the number and composition of the states 
in the finite state machine.  Table I contains a listing of the 
various mutations used in this work. 

It should be noted that some of the implemented mutations 
modify the fundamental structure of the finite state machine.  
Thus, if left unchecked, the finite state machines would soon 
degenerate and have little functionality.  Measures were 
therefore taken to correct any destructive changes to the 
mutated finite state machine.  For example, when a ‘remove 
state’ mutation is applied to a solution (e.g. remove state s1), 
any transition whose next_state is s1 will be assigned a 
random state from the machine as the new next_state. 

2) Crossover 
The crossover operation first selects two solutions from the 

population to be parents, and then creates a new solution by 
combining elements of the two selected parents.  Within the 
finite state machine representation, there are two options to 
implement crossover operations; transition-based and state-

based.  In the transition-based method, the parents are 
interpreted as a list of transitions, and thus the crossover point 
can occur in the middle of a state.  With the state-based 
method, the parents are seen as a sequence of states, so when 
crossover occurs entire states are preserved.   
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Fig. 1.  An example finite state machine that implements a simple algorithm 

for collection objects and placing them near a light source. 

Both methods for the crossover operation were used and 
their performance contrasted.  The transition-based method 
contributed more when there were fewer mutations due to its 
ability to modify states by selecting the crossover point within 
a state.  The state-based method was more effective when a 
greater number of mutations were present since preserving 
entire states allows states to evolve over time without being 
catastrophic modification. 

Fig. 2 shows a typical crossover operation within the state-
based representation. In this case, the states and transitions of 
the finite state machine on the right are preserved through 
crossover, with only the additional state (3) and its transition 
to state (1) added to the child shown.  The preservation of 
actions along with states results in safeguarding structures 
within the FSA while also enabling significant changes as 
well (i.e. entire states and actions are added or subtracted from 
parents in the following generation).   

The transition rule-base representation was designed to 
adjust actions based on sensor feedback (transitions) between 
states.  Fig. 3 shows the same parents in the previous figure 
performing a typical crossover operation under the transition-
based representation.  In this crossover, states from both 
parents are preserved, yet a variable number of transitions 
between the two survive in the child.  This structure allows for 
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Given the broad level of swarm behaviors that need to be 
captured, these two structures are designed to complement 
one-another based on the evolutionary progress of the 
population.  For example, should a partially effective solution 
be reached based on the broader changes allowed by the state-
based representation, an evolutionary plateau would also 
likely occur given the lack of flexibility necessary to modify 
transitions.  In such a case, switching to a transition-based 
representation would likely spur progress towards a final 
solution.  

C. Fitness Evaluation 
For fitness evaluation, a fitness function is defined that 

assigns a score to each candidate solution based on their 
ability to satisfy certain criteria.  A fitness function should 
highlight the salient features of a problem in order to 
effectively drive evolution.  The fitness functions used here 
were actually a combination of many fitness functions, one for 
each salient feature.  Then each score was weighted and the 
sum of the weighted scores was assigned as the final score for 
the evaluated solution. 

In order to evaluate a solution, the rule-base must be 
executed.  SWEEP [3] (SWarm Evaluation and 
Experimentation Platform) was used to execute each rule-
base.  The finite state machine was given to SWEEP, which 
then created a swarm of agents, each with the given finite state 
machine as an internal controller.  Each run of SWEEP 
provided a sequence of time-step snapshots, and it was these 
snapshots that were used in generating the final fitness scores. 

There were two methods used to obtain the data needed for 
fitness evaluation.  The first method sampled every nth time 
step from the solution output, and combined the scores from 
all n samples as the final score for the solution.  This method 
is better when one is trying to evolve behaviors that depend on 
the movement and position of the agents, such as pattern 
formation.  Unfortunately, the sampling method can slow 
down the system significantly if the sampling rate is too high.  
The second method only looked at the state of the solution in 
the final time step.  This method was much faster, and 

excelled in evaluating so
independent of the final p
more on the state of th
collection. 

D. Selection Mechanisms
Selection mechanisms ar

and too keep a population at a desirable size.  Two methods 
were used during this work.  The first selection mechanism is 
the traditional fitness proportional or “roulette” method.  In 
this method, the probability that a solution will survive into 
the next generation is proportional to their fitness score.  
Thus, more fit individuals are more likely to survive, but some 
less fit individuals also survive.  This is an important aspect 
because sometimes a solution is unfit overall, but a portion of 
that solution when combined with a more fit solution can 
produce offspring that is more fit than either of the parents.  
The second selection method used was elitism, which 
effectively selects only the best solutions for survival. 

Neither method clearly made evident that it was the best 
selection mechanism, with both providing about the same 
performance in terms of convergence rate.  In the end, a 
hybrid method was used that allowed the top few solutions to 
survive, and then used roulette selection to select the rest of 
the solutions for survival.  A more in-depth trade-off study of 
different selection mechanisms will be performed in 

conjunction with this work at a later date. 
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Fig. 4.  Three agents are attempting to collect four objects scattered over the 
environment.  Once an agent has picked-up an object, the agent finds the goal 
area and delivers the object. 
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III. CASE STUDY: OBJECT COLLECTION 
In order to validate the functionality of the system, the 

standard group coordination problem of object collection was 
considered.  Object collection is a very prevalent problem in 
the world, with examples ranging from the foraging 
techniques of ants to the optimized collection routes for 
garbage men. 

A. Problem Description 
Given N agents and M objects randomly distributed over a 

grid-based environment with pre-defined square goal region, 
collect and place all of the objects inside of the goal within a 
given amount of time T.  An example scenario is shown in 
Fig. 4. 

There were several reasons for selecting object collection as 
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a driving problem.  First, Koza [1] selected object as a 
problem for evolving emergent behaviors, and so it was hoped 
that at some point a comparison could be examined between 
Koza’s results and the results of this work.  Secondly, the 
fitness of a solution can be adequately determined solely 
through the examination of the last time-step, thus reducing 
the amount of computation time needed.  Finally, the salient 
features of the fitness function are easily identifiable and do 

not conflict with each other, which allows for the easy 
creation of fitness functions for this problem. 

B. Implementation 
The system was set to continue evolving until a “perfect” 

solution was evolved.  The population size was kept at 25.  
Normally, population sizes are much larger, but due to the 
simulation component of the evaluation, smaller populations 
were used to speed-up overall execution [4].  The mutations 
and crossover operations previously defined were used, with a 
mutation rate set at 50% and a crossover rate of 50%.  When 
mutating, each possible mutation had an equally probable 
chance of being selected. 

The environment for object collection was defined to be a 
100x100 grid, with the goal region being a randomly placed 
5x5 square.  There were 30 agents and 30 objects randomly 
distributed over the environment.  So as not to create any early 
false positives, it was assumed that no objects would have an 
initial position inside of the goal region. 

Specific sensors and actions were created for the object 
collection. Four sensors and six actions were defined for an 
agent performing object collection, as listed in Table II. 

 
Both sensors S1 and S2 have effective radii of 3 grid units.  

By separating the sensor logic into “near” something and 
“on/in” something, the rules for state transitions can be kept in 
the binary realm. 

What is meant by the phrase “pseudo-random” in action A1 
is that a random heading is chosen, and that heading is then 
followed for a randomly chosen number of time steps.  The 
heading and current step count is stored within agent memory 
so that the information can persist between time steps.  
Actions A3 and A4 convenience functions because the focus of 
the system is to evolve high-level logic, not low-level 
controls. 

C. Preliminary Results 
The results of this work are best understood through the 

development process of the fitness functions.  The initial 
fitness functions focused on the final goal, that being 

collecting all objects into the goal.  While this function did 
convey the intent of the problem, it did not sufficiently 
describe all the salient features of the problem and thus did 
not drive evolution quickly enough.  Later fitness functions 
more precisely defined the problem at hand and thus were able 
to more efficiently drive the evolutionary process.  The 
following sections will discuss the three main fitness functions 
that were used in this work. 

TABLE II 
AGENT ACTIONS AND SENSORS 

 
Actions

Name Description
A1 Move pseudo-randomly
A2 Move { up, down, left, right }
A3 Move towards the nearest object
A4 Move towards the goal
A5 Pick-up an object
A6 Put down an object, if holding one

Sensors
Name Description

S1 Near an object
S2 On top of an

object
S3 Near the goal
S4 In the goal

1) Fitness Function #1 
The first fitness function looked solely at the number of 

objects that were within the goal region at the final time step.  
Each solution was given one point for every object found in 
the goal region.  Due to the nature of this fitness function, a 
solution can only receive points once it has evolved a partially 
correct solution, meaning that at least one agent picked-up an 
object and dropped it in the goal.  This unfortunately does not 
imply that the agent dropped the object in the goal because it 
recognized the goal region as desirable, as evidenced by the 
false positive solutions found in which an agent picked-up an 
object close to the goal and just happened to randomly drop 
the object in the goal. 

Overall, this fitness function performed poorly, producing 
hundreds of generations with an average score of zero.  Once 
serendipity struck though, the fitness function quickly singled 
out well-performing solutions.  Unfortunately, serendipity is 
not an event that one should wait for when fast performance is 
desired.  Thus, focus was returned to the statement of the 
problem, which in turn lead to the development of a more 
precise fitness function as discussed in the next section. 

2) Fitness Function #2 
The development of the second fitness function was a result 

of a closer examination of the problem statement.  This fitness 
function assigned 31 points for every object in the goal and 1 
point for every object being held by an agent during the final 
time step.  The number of points assigned for each object in 
the goal was computed as ‘1+(number of objects)’ because 
this way, a solution which places one object in the goal region 
has a higher fitness score than a solution that picks up every 
object but fails to place any objects in the goal region.   

This fitness function performed much better than the 
previous fitness function, being able to produce solutions that 
successfully collected every object within 50 generations.  
Unfortunately, evolution stalled as the population of solutions 
converged on solutions that successfully collected all the 
objects, but did not place any in the goal.  This once again can 
be seen as a deficiency in the fitness functions ability to 
clearly convey the full intent of the problem to the 
evolutionary process.  In this case, the fitness function did not 
provide a clear evolutionary path between the stages of 
picking up an object and placing the object into the goal.  
Thus, focus once again turned to a closer examination of the 
problem statement to produce a better fitness function. 

3) Fitness Function #3 
The final fitness function developed identified the three 
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main salient features of object collection that can be evaluated 
looking only at the final time step.  These three features are: 
pick up objects, bring objects to the goal, and put down 
objects in the goal.  As in the previous fitness functions, a 
single point was given to a solution for every object that was 
being held by an agent during the final time step, and 31 
points were given for every object put down in the goal.  As 
for bringing the objects to the goal, 15 points were awarded to 
a solution for each agent holding an object in the goal during 
the final time step.  Since this aspect is the intermediary stage, 
it followed that the amount of points awarded should be 
approximately in the middle.    

This fitness function performed the best overall.  Much like 
the previous fitness function, solutions that collected all 
objects were quickly evolved.  Instead of stagnating at this 
stage, as in the previous fitness function, evolution continued 
and solutions emerged that not only collected all the objects in 
the environment, but also saw agents holding objects in the 
goal area.  So, this fitness function was successful in 
collecting and clustering the objects, but in the end, it was 
once again left up to serendipity to make the final 
evolutionary jump (most likely though mutation) from an 
agent just holding an object in the goal to the agent actually 
putting down the object in the goal. 

IV. FUTURE WORK 
Three main avenues remain to be explored before problems 

harder than object collection can be tackled.  First, even more 
precise fitness functions can be constructed by switching from 
a final time step method to a sampling method.  For example, 
another component to a fitness function can be added such 
that solutions receive rewards for agents that move in the 
direction of the goal.  The second avenue of exploration is that 
of adapting mutation and crossover rates.  Since mutations 
affect fine-grained changes and crossover affects coarse-
grained changes, these two aspects can be exploited during 
different stages of evolution.  For example, during a period of 
stagnation, the percentage of crossover could be increased in 
order to produce more diverse solutions to break free of the 
evolutionary halt.  The final avenue to explore is that of 
incorporating a-priori knowledge into the system.  In many 
cases, the user will be privy to domain-specific knowledge.  
For example, in object collection, the user knows that once an 
agent carries an object into the goal region, the object should 
be placed down.  This piece of information could be inserted 
into a mutation that inserts that piece of knowledge into the 
solution.  Over time, this could be eventually be implemented 
in “smart” mutations that can recognize which solutions need 
this information, and possibly even determine where in that 
solution this information should be inserted. 

V. CONCLUSION 
The purpose of this work was to develop a genetic 

programming system to evolve rule-sets for groups or swarms 
of agents.  Solutions were encoded as finite state machines, 

and the evolutionary operators (mutations and crossover) were 
implemented to operate on finite state machines.  The standard 
group coordination problem of object collection was explored 
as a driving problem for the development of the system.   

Through the development of the object collection scenario, 
the need for a fitness function to clearly communicate the 
salient features of the problem to the evolutionary process 
became evident.  The final fitness function used clearly 
delineated the three stages of object collection, provided a 
weighted score for each solution based on these stages, and 
successfully evolved a rule-set for object collection.   
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